Sign in
Sign up
Explore
Enterprise
Education
Search
Help
Terms of use
About Us
Explore
Enterprise
Education
Blog
Sign in
Sign up
Fetch the repository succeeded.
Donate
Please sign in before you donate.
Cancel
Sign in
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
Unwatch
Watching
Releases Only
Ignoring
12
Star
57
Fork
8
jdwbh
/
mvstats5
Code
Issues
0
Pull Requests
0
Wiki
Insights
DevOps
Gitee Go
Baidu Efficiency Cloud
Tencent CloudBase
Tencent Cloud Serverless
Jenkins for Gitee
Service
Gitee Pages
Quality analysis
CodeSafe
Gitee Scan
Don’t show this again
Create your Gitee Account
Explore and code with more than 6 million developers,Free private repositories !:)
Sign up
Already have an account?
Sign in
This repository doesn't specify license. Without author's permission, this code is only for learning and cannot be used for other purposes.
The license selected for the repository is subject to the license used by the main branch of the repository.
master
Manage
Manage
Branches (1)
master
Clone or download
HTTPS
SSH
SVN
SVN+SSH
Copy
Download ZIP
Login prompt
This operation requires login to the code cloud account. Please log in before operating.
Go to login
No account. Register
mvstats5
/
Jupyter.ipynb
Branches 1
Tags 0
Jupyter.ipynb
53.75 KB
{ "cells": [ { "cell_type": "markdown", "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "source": [ "### **多元统计分析及R语言建模(第五版)**\n", "### 本文档是基于Jupyter Notebook编写的\n", "### 建议安装anaconda(https://www.anaconda.com/) \n", "### 修改时间:王斌会 2020.2.1" ] }, { "cell_type": "markdown", "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "source": [ "# 1 多元统计分析概述 " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "outputs": [], "source": [ "#【输出设置】\n", "#setwd(\"D:/mvstats5\") #设置目录\n", "par(mar=c(4,4,1,1),cex=0.75)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAGkCAMAAADewwbdAAAAM1BMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD///89ODILAAAACXBIWXMAABJ0\nAAASdAHeZh94AAAR80lEQVR4nO2d2WKDIBBFccnaaPz/r61LFk1cgBlgnNzz0KYpYaae4oII\npgGqMakTAGGBYOVAsHIgWDkQrBwIVg4EKweClQPByoFg5UCwciBYORCsHAhWDgQrB4KVA8HK\ngWDlQLByIFg5EKwcCFYOBCsHgpUDwcqBYOVAsHIgWDkQrBwIVg4EKweClQPByoFg5UCwciBY\nORCsHAhWDgQrB4KVA8HK2aNgY8z01fuNMYcoyZwyY16RqjaTW/fi1r6oosTfQq3gvyzKn3Zq\nY78Fdz8W3ffCmFOM8NuoFTzfqtnJH0129PO5ac7G5DGiW6BC8HqhSLkM/BmT1XW72/6LEd0C\nFYIf3+pTu2c05WV4xzyLXQ/dXvT6+EjV/lScR5+scnNsX13K9nV+rJ71nXOTt5LOmSk+XE3q\n+/o/an9ZluO9dmIUCa6yh9ZiIrh4vC77T/w9irw/mfcfeJbqW96jQCv/+Hrvxbi+8f/Rg7rP\nIquDbgEHFAlu207beOuiOwq+t3z5NDcYzl4/Pj9puo+1B82idXKceGs9jf83Bib1zQhuLkON\nUtip4C9Nw9duB1sPJziPX13b7+e63Xu336/91s+6b9n7k53Y7tyomtTUvnvumvet//aO/VHf\n3KE+l3OG1agS3El7HWqfW/7Qn9U2feM89O2vL3F5f/L6UfXw9W/y7V3go74ZwZUxUq6BOxQJ\nPg1vPBy/fzUcDqv+jezp4/PXbYHLsTAvwc3Xt9fnxvXNCO4rKXj/YgI7FTx99fh2fB45q69f\nPV+Zb8HDz5d89B+zLnjy6ktwdxDIBB2ENQlu6stwils0sy04m23B/Y/dLjs/nG9OLTj7/GUz\nnET//Qk6jVYluKO/Sn2/V24eg/vf5o/3NwWXG8fgQ392LehCWJHg/NG43k2rXjyLNh/yHt+3\nW/DGWfSj7QrqylIkuN32RdWfa3U9U905dff91YMxtKnv6+C+oqIvfM02BX/W9yE4fzRwOZ3R\nigS/TrL6U9iDed/YefvoW6CZ9GT1b/89z8/6lrcm+KO+6S9Pr/NnMbeTNAkejr/FcIx8Hwev\nh2x0gXzr+qKvX/K6t7PDrXp2UM3U/mRS3+SXr9vBgm4I71EwA/VwoP4BfkywGa5Qb8W0g1kx\nPyb4fYo07aLUy48Jft1S7M+wf4EfE9xewHb3+7LDj7Tf3xP8c0CwciBYORCsHAhWDgQrB4KV\nA8HKgWDlQLByIFg5EKwcCFYOBCsHgpUDwcqBYOVAsHIgWDkQrBwIVg4EKweClQPByoFg5UCw\nciBYORCsHAhWDgQrB4KVA8HKgWDlQLByIFg5EKwcCFYOBCsHgpUDwcqBYOWoFGy22VEYYpKp\nEwjB9h/FIzhOGBoCUuBn7Y+6D4QOY1siOAJS4Gfxj3qZNRyKITgV83/UuN2a7scwYdxKBCdQ\nCmnPNBYEf5agKv5lwZFDWESc2jRzb3KEcS0RnF8RfJ8vAcH7CLEV8aulvkpQDENwtBAbEb8t\nvksQ9tIQHC3EesQZhWb9115hvEoEB4L9DUNwtBCrEef8bZdwDuNXIjj+Kfz1C9QYUx43FlJN\nLHjW3nYbdw3jWSI4vinU+agnY33F+rSC591B8BZHk12GhTara7a+jFhSwQvqts+z3cJ4lwiO\nbwrZcx3VpltKdXUlz5SCl8R9XymTwviXCI5vCpMe5vXu5oSCF7V95+RhWLXgXbTgZWkQvEV7\nDL4OK1wLPga7CPYwrFrweCVek9dBQnjzvFe0WWKCs2Hdgpu/Y38dnJUnodfBa8JmR8jdHQfM\nKRcsKcRcxNUGuT0kgEUfBIeLuL7DhWBbzpnJz2FDuGM2D6gLOX2N6vGpxKlEcLxTuJUmOzcn\nqV2VEExM4dabPZpD3VSlWW3DKQRvnREv5XTfLsJbIji+KRy6a9/j0MNRmzxECH/M5hXPYk73\n7SKsJYJD66o05egH7hD+EAS/DUNwy2XYN0vrqtzusljJ6b5dhLFEcPx30Ydn91V9ENZVeSdt\neQjuqbPXftnMNOCkTzbQBD8N/7jg9gzrqTVbbb/x/8o7cctDsLwQY+7kLX/fLsJWIjjqBN+t\nIq6XuG8X4SoRHG2Cedxw/JfYlQgOSwqCroOZGh99P29ZIjgQvFQNBAsK8YLt/Ih6Km5bIji6\nBDNe4RAvpm1LBEeVYM5OKFp/p32Y0PinIO/ZJNb7BL8uWOKzSbyCKbekHMKExjcFgc8m8d7K\nJYwacAoTGt8U5D3ZwDwYw3/cj1uY0NDuB8/9wBbCDe7hVH0Rn6GZjmFCo6YFBxHsM7jaMUxo\nCMdgWc8mhRG8OgmPasHSnk1iH7P+LPKzgmU9mzTVwCnY7RFF9zCh0dGTtTBR4TIOgl2eIvcI\nExoVghcnKlzERfDicRiCY4UILHhJMQRHCvG19dkF28ym5hkmNAoEr001uoS74JlGDMFRQmzN\nRDmLs+BmdU7ipZU+IJiBaIK/mrH5FPtlWa/giE82RBTcvBvr4to8k7f1Co4XItjZj38lb8fC\nBOenKnQIdsJdv5AqsR4cFpzpXT8TwnHIv9JqLlmvEsRK7pbjd4MzTqG+HEI4/knBtk9HBOcz\nhb9Tzu2Y+69cnrqMcw4z+tqid5ux1cGZSeGWtblvTI1EDMFUn/VkwR4lOCqxGFsdnO8UroXF\nSElaCKb6wt7m4aiEZZFTGh9J1qe2+ebXurVcBgrBVl/gG7UsgtMbniT5151kHYfBVnz9Ez8s\neHvobXAm18Ft4z0/R9+sD6TzDcFZ3y4EJzc8uQ4ur6FDMNYXerAUk+DUhifXweFD8NW3Ohu0\nZR3EIpYl0hqe9mQ9XmRsu+fPEHz17UdwWsNzgiveG0BBBIcfkc4nOKnhZ5LXSRfN6uSiviE4\n64vwTIkywc34cdB8Y6SzZwi++mI8FcYoOKXh2WNwuBBM9e1NcELDEXpL+QVHeXCXVXA6w88U\nutYbaJQNu+A4j97zCk5mGIJDVjIukcjwHnfR+xScyPAOBUea/oZdcBrDkxTO7fVvlTNfJXEL\njjVDmULB1+7Y2w3nMJKvgyHYiXEKhbk0N5M3F/pwjnAD36NNIhkgTArDnx0dt26+DcFn0fGm\ngQ0RJoHhT8GluUIwWyVfJeIbnu6ib9duIAfDLnopBJWIU7GHCRPd8MdJljGnrgGzjuxgFBxz\nMYVAYWIbnl4mDTNe5ZdwIWhAsDP76uhQIDi24V0JjrqgUbAwcQ0Tt/45N5tjMSF4SkLBp9y6\nb2Io8pjPcH1tOzbBcdecCxcmquFxCieXx/O6IkdzrJumOsZZATzysqABw8Q0PE4hc3imsBec\nmX4odaQVwCHYh8+eLOvPmdEHokwIHntp7pBhIhoep1Aa+2cbeqeHp+AIE4LzrsiQWHBEw+MU\nqqywvk/YnjyfzlfTdYnUxxgTgusSHM/wdBftcpL1KmhMFn5CcOYlN5ILjmbYV3Bzu53PZdmf\nah3X9+wcgrkn7P9NwYJDQLAvEByykrUSkQxPU7iW/U1/3omyGASzL7khQHAkw5MUiuHwazJW\nwxC8QBTD4xTOpqg7wWdzCBXCovQMH/OdMUQUIbgff7TNdqq2KXQ9j5MeqrXP2SfhKPj7rQBr\nqsgQzDRE1Prjw/NJjZXgMwTvT3D+aME3myf8b5ntyDyq4BBrqggRzDOK3/rjj2Pw1e6u0m3j\nNvBsCI/SQdZUkSKY5UEr+4+Xjx2uXds8jxYg/arW+ywBgp3rcPh4dx1sSt5BlcQWHGY1GzGC\nOZ6FDflx/hAfpQMtuSFHMMN8FCE/zh/i5wTTZ5Sx/fj10I25K468TwdD8GYJ6qRfdh+v3is+\nF649lQGvg39BMHXaPqsU6qybB7x9UV1y55mEwwkOtSrS7wk+jq6Niu4JND4IgoOtiiRLMHFm\nVasUcvPeL1cpHx/9ScG0ya+tUpjsZVM+AD4uHW5VJAje5u80dHyVW6fd3oIDrqwuTTBpfQKr\nAK6C6/HstOt7dAi2KUFYI8gqgKvgo8kuQ1d0dc04x0W/S4dc9kqeYMKfaxXAdRRBNrrTcON8\nsoHjX3qXgv13WFYBXAU7tHgItizhe05JTGGe4C047KpIsQS7jbjyvCokJjlPewy+DlfOgY7B\nOgQ7lvDruCOmsEAx+i/MGZ9NgmDnOogpLPF37K+Ds/IU4jo48LpmQgX73VshpkDGR3DoZa+k\nCvYawEJMgQwEu5TwGIJGTIGMh+Dg65rJFewxSpiYAhl3weHXNRMs2H2cPzEFMhDsWOK+WcIB\niYIjrGsmWrDrw5TEFPyqJQx8j7GuGQQzAsHOJdwmNCCmQMZRcJRlr4QLdptUiJgCGQj2KOEy\nLRgxBTIQ7FPCYeZGYgpk3ELEWbhOvuDmbj17MjEFMk4hIq1rtgPB9tNjE1MgA8GeJWwnuCem\nQMYlRKyF63Yh2HYNEmIKZBxCRFvXbB+CLdcBI6ZAxj5EvHXNdiLY7j+emAIZCCaUsDlmEVMg\nYx0i4rJXuxFsc9ZJTIEMBJNKEGe0FCQ45rJXOxK83bVHDEDGMkTUZa/2JJjWhiE4bRirEhTD\nYgTHXfZqX4IphqUIjrzs1c4EEwwLERx7VaS9CX7dW3JGhuDoqyLtTrB3GxYhOP6aKvsT7GsY\ngtOGcSjhZxiC04ZxKeF1HJYgOMGiObsU7NWIBQh2fVLjhwV7EEiww5MNSdZUgWBG1kOkWVMF\nghlZDZFoyQ0IZmQtRKolNyCYkZUQyeZzh2BGxiGmk4B9LDppO8lelBJi9O1M8PgXCaf7hmBG\nlgSnnO4bgrfxmhB89DrpbNAQvIXnhOCv14v9qmK2mpREEgn2nBD8+Tr1TJQQvIXndMKP1yv3\nRcRsNSmJJBLsOSH48Dr9RIUQvAWhBa/f1hSz1aQkku4Y7DMhuNm8ay1mq0lJJNVlkt+E4FKm\nWIHgbbwmBN8edSJmq0lJZEc9Wfe7mBk4IJiR8aWRlG0Cwdu4dVXe76Ke/oXgLZy6Ku+vQ6+U\nbQLBWzh0Vd4FPpgCwVvQuipJCUGwC74fJ3VV0hKCYBfQgqUnku4Y7NdVSU8Igl3w/vh6V+XS\nMLq5UXZgHV9Djy3u/UnrrkqQkgg9WSAlEKwcCFYOi2DqiQAIBwQrR5ya1Bcl8iBuTx4tfHAk\nxLNb0lEHBIesREAdEW74uyFgm/BVIqCOCDf84yTEXYeYROTf8I+TEHcdYhKRf7vQDQHbhK8S\nAXVEuOHvWLGQOsQkghYcpg4xici/4R8nIe46xCQi84Z/goSY6xCTiLYb/gK2CV8lAupAT1bI\nSgTUIU4w4AWClQPByoFg5UCwciBYORCsHAhWDgQrB4KVA8HKgWDlQLByIFg5EKwcCFaOPMHn\n3GRH8higM+0PO2YCkmg4NoY4wcd+lFdG3Lg32kjeYcBZTsuBmkTDsjGkCb6ZQ9396x9otWSk\nbftnsltXB22wGTGJhmdjSBNcDgnRNs3ZFKQKjubafr2YU8okGp6NIU3wA9qmMUdaBaXphnzf\nTJkyiVFN+gTXtAcWb9SNwrEboSbxgrYxZAo+9/tICukFc1TQQ9sYIgVXGWnn2KFHMHFjSBRc\nZ/QnytUIpm4MKYLHE8oUnheg4zpI2zYTJNh3Y7xyoKfAwltOlRcVtQ7ith3OoivaWTQ1iR7/\njfHKgZoCN1eeGT9I2/bUn9ZcyU/FkgUzbAxpgiumGV0E9GTRBXNsDGmCDzzzuxG3bc4zeRD1\nr+DYGNIEM03gR9y2dX83iZgCXTDHxpAmGDADwcqBYOVAsHIgWDkQrBwIVg4EKweClQPByoFg\n5UCwciBYORCsHAhWDgQrB4KVA8HKgWDlQLByIFg5EKwcCFYOBCsHgpUDwcqBYOVAsHIgWDkQ\nrBwIVg4EKweClQPBh8dUDQVxhluhQHCTmXPTTRiYpU4kCBDc/BlTNTV9Th2ZQPCwky517qAh\nuCczJ6U7aAjuaXfSSnfQEDxw0LqDhuCBTO0eGoI7DkbtORYEN/3co43agzAEdzvoi9p+Dgju\nd9CN2p5KCO6ukbql4yqlO2kIHrqi1XZG/7zgw2veb5076Z8XrB0IVg4EKweClQPByoFg5UCw\nciBYORCsHAhWDgQrB4KVA8HKgWDlQLByIFg5EKwcCFYOBCsHgpUDwcqBYOVAsHIgWDkQrBwI\nVg4EKweClQPByoFg5UCwcv4BGnkJzN7HaaoAAAAASUVORK5CYII=", "text/plain": [ "Plot with title \"Histogram of X\"" ] }, "metadata": { "image/png": { "height": 210, "width": 240 } }, "output_type": "display_data" } ], "source": [ "X=rnorm(50); #产生50个标准正态随机数\n", "hist(X,prob=TRUE) #做数据的直方图\n", "lines(density(X),col='red') #添加密度函数曲线 " ] }, { "cell_type": "markdown", "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "source": [ "# 2 多元数据的数学表达 " ] }, { "cell_type": "markdown", "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "source": [ "## 2.3 数据矩阵及R表示" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "outputs": [ { "data": { "text/html": [ "12" ], "text/latex": [ "12" ], "text/markdown": [ "12" ], "text/plain": [ "[1] 12" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>1</li><li>2</li><li>3</li><li>4</li><li>5</li><li>6</li><li>7</li><li>8</li><li>9</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 1\n", "\\item 2\n", "\\item 3\n", "\\item 4\n", "\\item 5\n", "\\item 6\n", "\\item 7\n", "\\item 8\n", "\\item 9\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 1\n", "2. 2\n", "3. 3\n", "4. 4\n", "5. 5\n", "6. 6\n", "7. 7\n", "8. 8\n", "9. 9\n", "\n", "\n" ], "text/plain": [ "[1] 1 2 3 4 5 6 7 8 9" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<style>\n", ".list-inline {list-style: none; margin:0; padding: 0}\n", ".list-inline>li {display: inline-block}\n", ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", "</style>\n", "<ol class=list-inline><li>1</li><li>3</li><li>6</li><li>5</li><li>4</li><li>9</li></ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 1\n", "\\item 3\n", "\\item 6\n", "\\item 5\n", "\\item 4\n", "\\item 9\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 1\n", "2. 3\n", "3. 6\n", "4. 5\n", "5. 4\n", "6. 9\n", "\n", "\n" ], "text/plain": [ "[1] 1 3 6 5 4 9" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#### 创建一个向量\n", "x1=c(171,175,159,155,152,158,154,164,168,166,159,164)\n", "x2=c(57,64,41,38,35,44,41,51,57,49,47,46)\n", "length(x1) #向量的长度\n", "a=1:9; a\n", "b=c(1,3,6:4,9); b" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "outputs": [ { "data": { "text/html": [ "<table>\n", "<caption>A matrix: 2 × 3 of type dbl</caption>\n", "<tbody>\n", "\t<tr><td>1</td><td>2</td><td>3</td></tr>\n", "\t<tr><td>4</td><td>5</td><td>6</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 2 × 3 of type dbl\n", "\\begin{tabular}{lll}\n", "\t 1 & 2 & 3\\\\\n", "\t 4 & 5 & 6\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 2 × 3 of type dbl\n", "\n", "| 1 | 2 | 3 |\n", "| 4 | 5 | 6 |\n", "\n" ], "text/plain": [ " [,1] [,2] [,3]\n", "[1,] 1 2 3 \n", "[2,] 4 5 6 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<table>\n", "<caption>A matrix: 3 × 2 of type dbl</caption>\n", "<tbody>\n", "\t<tr><td>1</td><td>4</td></tr>\n", "\t<tr><td>2</td><td>5</td></tr>\n", "\t<tr><td>3</td><td>6</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 3 × 2 of type dbl\n", "\\begin{tabular}{ll}\n", "\t 1 & 4\\\\\n", "\t 2 & 5\\\\\n", "\t 3 & 6\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 2 of type dbl\n", "\n", "| 1 | 4 |\n", "| 2 | 5 |\n", "| 3 | 6 |\n", "\n" ], "text/plain": [ " [,1] [,2]\n", "[1,] 1 4 \n", "[2,] 2 5 \n", "[3,] 3 6 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<table>\n", "<caption>A matrix: 3 × 2 of type dbl</caption>\n", "<tbody>\n", "\t<tr><td>1</td><td>4</td></tr>\n", "\t<tr><td>2</td><td>5</td></tr>\n", "\t<tr><td>3</td><td>6</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 3 × 2 of type dbl\n", "\\begin{tabular}{ll}\n", "\t 1 & 4\\\\\n", "\t 2 & 5\\\\\n", "\t 3 & 6\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 3 × 2 of type dbl\n", "\n", "| 1 | 4 |\n", "| 2 | 5 |\n", "| 3 | 6 |\n", "\n" ], "text/plain": [ " [,1] [,2]\n", "[1,] 1 4 \n", "[2,] 2 5 \n", "[3,] 3 6 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<table>\n", "<caption>A matrix: 2 × 2 of type dbl</caption>\n", "<tbody>\n", "\t<tr><td>2</td><td> 6</td></tr>\n", "\t<tr><td>6</td><td>10</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 2 × 2 of type dbl\n", "\\begin{tabular}{ll}\n", "\t 2 & 6\\\\\n", "\t 6 & 10\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 2 × 2 of type dbl\n", "\n", "| 2 | 6 |\n", "| 6 | 10 |\n", "\n" ], "text/plain": [ " [,1] [,2]\n", "[1,] 2 6 \n", "[2,] 6 10 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<table>\n", "<caption>A matrix: 2 × 2 of type dbl</caption>\n", "<tbody>\n", "\t<tr><td>14</td><td>32</td></tr>\n", "\t<tr><td>32</td><td>77</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A matrix: 2 × 2 of type dbl\n", "\\begin{tabular}{ll}\n", "\t 14 & 32\\\\\n", "\t 32 & 77\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A matrix: 2 × 2 of type dbl\n", "\n", "| 14 | 32 |\n", "| 32 | 77 |\n", "\n" ], "text/plain": [ " [,1] [,2]\n", "[1,] 14 32 \n", "[2,] 32 77 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "A=matrix(c(1,4,2,5,3,6),nrow=2,ncol=3); A #A=matrix(c(1,4,2,5,3,6),2,3); A \n", "B=matrix(c(1,2,3,4,5,6),3,2); B \n", "t(A) #求矩阵转置\n", "A[,1:2]+B[1:2,] #矩阵加法\n", "C=A%*%B;C #矩阵乘法 " ] }, { "cell_type": "markdown", "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "source": [ "## 2.4 数据框及R表示" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "outputs": [ { "data": { "text/html": [ "<table>\n", "<caption>A data.frame: 12 × 2</caption>\n", "<thead>\n", "\t<tr><th scope=col>身高</th><th scope=col>体重</th></tr>\n", "\t<tr><th scope=col><dbl></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>171</td><td>57</td></tr>\n", "\t<tr><td>175</td><td>64</td></tr>\n", "\t<tr><td>159</td><td>41</td></tr>\n", "\t<tr><td>155</td><td>38</td></tr>\n", "\t<tr><td>152</td><td>35</td></tr>\n", "\t<tr><td>158</td><td>44</td></tr>\n", "\t<tr><td>154</td><td>41</td></tr>\n", "\t<tr><td>164</td><td>51</td></tr>\n", "\t<tr><td>168</td><td>57</td></tr>\n", "\t<tr><td>166</td><td>49</td></tr>\n", "\t<tr><td>159</td><td>47</td></tr>\n", "\t<tr><td>164</td><td>46</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 12 × 2\n", "\\begin{tabular}{ll}\n", " 身高 & 体重\\\\\n", " <dbl> & <dbl>\\\\\n", "\\hline\n", "\t 171 & 57\\\\\n", "\t 175 & 64\\\\\n", "\t 159 & 41\\\\\n", "\t 155 & 38\\\\\n", "\t 152 & 35\\\\\n", "\t 158 & 44\\\\\n", "\t 154 & 41\\\\\n", "\t 164 & 51\\\\\n", "\t 168 & 57\\\\\n", "\t 166 & 49\\\\\n", "\t 159 & 47\\\\\n", "\t 164 & 46\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 12 × 2\n", "\n", "| 身高 <dbl> | 体重 <dbl> |\n", "|---|---|\n", "| 171 | 57 |\n", "| 175 | 64 |\n", "| 159 | 41 |\n", "| 155 | 38 |\n", "| 152 | 35 |\n", "| 158 | 44 |\n", "| 154 | 41 |\n", "| 164 | 51 |\n", "| 168 | 57 |\n", "| 166 | 49 |\n", "| 159 | 47 |\n", "| 164 | 46 |\n", "\n" ], "text/plain": [ " 身高 体重\n", "1 171 57 \n", "2 175 64 \n", "3 159 41 \n", "4 155 38 \n", "5 152 35 \n", "6 158 44 \n", "7 154 41 \n", "8 164 51 \n", "9 168 57 \n", "10 166 49 \n", "11 159 47 \n", "12 164 46 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "X=data.frame(x1,x2); #产生由X1和X2构建的数据框\n", "Y=data.frame('身高'=x1,'体重'=x2);Y #赋予数据框新的列标签" ] }, { "cell_type": "markdown", "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "source": [ "## 2.5 多元数据的R调用 " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 方法一、复制拷贝(最方便)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "outputs": [ { "data": { "text/html": [ "<table>\n", "<caption>A data.frame: 5 × 7</caption>\n", "<thead>\n", "\t<tr><th scope=col>年龄</th><th scope=col>性别</th><th scope=col>风险意识</th><th scope=col>专兼职情况</th><th scope=col>职业状况</th><th scope=col>教育程度</th><th scope=col>投资结果</th></tr>\n", "\t<tr><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><td>20-29</td><td>男</td><td>有</td><td>兼职</td><td>金融</td><td>高中</td><td>赚钱</td></tr>\n", "\t<tr><td>50-59</td><td>女</td><td>有</td><td>兼职</td><td>科教</td><td>中学</td><td>持平</td></tr>\n", "\t<tr><td>40-49</td><td>女</td><td>无</td><td>专职</td><td>科教</td><td>中学</td><td>赔钱</td></tr>\n", "\t<tr><td>30-39</td><td>男</td><td>有</td><td>兼职</td><td>工人</td><td>中专</td><td>赚钱</td></tr>\n", "\t<tr><td>50-59</td><td>女</td><td>有</td><td>专职</td><td>农民</td><td>大专</td><td>赚钱</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 5 × 7\n", "\\begin{tabular}{lllllll}\n", " 年龄 & 性别 & 风险意识 & 专兼职情况 & 职业状况 & 教育程度 & 投资结果\\\\\n", " <fct> & <fct> & <fct> & <fct> & <fct> & <fct> & <fct>\\\\\n", "\\hline\n", "\t 20-29 & 男 & 有 & 兼职 & 金融 & 高中 & 赚钱\\\\\n", "\t 50-59 & 女 & 有 & 兼职 & 科教 & 中学 & 持平\\\\\n", "\t 40-49 & 女 & 无 & 专职 & 科教 & 中学 & 赔钱\\\\\n", "\t 30-39 & 男 & 有 & 兼职 & 工人 & 中专 & 赚钱\\\\\n", "\t 50-59 & 女 & 有 & 专职 & 农民 & 大专 & 赚钱\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 5 × 7\n", "\n", "| 年龄 <fct> | 性别 <fct> | 风险意识 <fct> | 专兼职情况 <fct> | 职业状况 <fct> | 教育程度 <fct> | 投资结果 <fct> |\n", "|---|---|---|---|---|---|---|\n", "| 20-29 | 男 | 有 | 兼职 | 金融 | 高中 | 赚钱 |\n", "| 50-59 | 女 | 有 | 兼职 | 科教 | 中学 | 持平 |\n", "| 40-49 | 女 | 无 | 专职 | 科教 | 中学 | 赔钱 |\n", "| 30-39 | 男 | 有 | 兼职 | 工人 | 中专 | 赚钱 |\n", "| 50-59 | 女 | 有 | 专职 | 农民 | 大专 | 赚钱 |\n", "\n" ], "text/plain": [ " 年龄 性别 风险意识 专兼职情况 职业状况 教育程度 投资结果\n", "1 20-29 男 有 兼职 金融 高中 赚钱 \n", "2 50-59 女 有 兼职 科教 中学 持平 \n", "3 40-49 女 无 专职 科教 中学 赔钱 \n", "4 30-39 男 有 兼职 工人 中专 赚钱 \n", "5 50-59 女 有 专职 农民 大专 赚钱 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#在Excel文件mvstats5.xlsx的表单d2.1中选择A1:G6,并复制到剪切板\n", "dat=read.table(\"clipboard\",header=T);dat #将剪切板数据读入数据框dat中" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 方法二、csv逗号文本格式(最通用)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table>\n", "<caption>A data.frame: 6 × 7</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>年龄</th><th scope=col>性别</th><th scope=col>风险意识</th><th scope=col>专兼职情况</th><th scope=col>职业状况</th><th scope=col>教育程度</th><th scope=col>投资结果</th></tr>\n", "\t<tr><th></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th><th scope=col><fct></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>20-29</td><td>男</td><td>有</td><td>兼职</td><td>金融</td><td>高中</td><td>赚钱</td></tr>\n", "\t<tr><th scope=row>2</th><td>50-59</td><td>女</td><td>有</td><td>兼职</td><td>科教</td><td>中学</td><td>持平</td></tr>\n", "\t<tr><th scope=row>3</th><td>40-49</td><td>女</td><td>无</td><td>专职</td><td>科教</td><td>中学</td><td>赔钱</td></tr>\n", "\t<tr><th scope=row>4</th><td>30-39</td><td>男</td><td>有</td><td>兼职</td><td>工人</td><td>中专</td><td>赚钱</td></tr>\n", "\t<tr><th scope=row>5</th><td>50-59</td><td>女</td><td>有</td><td>专职</td><td>农民</td><td>大专</td><td>赚钱</td></tr>\n", "\t<tr><th scope=row>6</th><td>40-49</td><td>女</td><td>有</td><td>兼职</td><td>管理</td><td>小学</td><td>赚钱</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 7\n", "\\begin{tabular}{r|lllllll}\n", " & 年龄 & 性别 & 风险意识 & 专兼职情况 & 职业状况 & 教育程度 & 投资结果\\\\\n", " & <fct> & <fct> & <fct> & <fct> & <fct> & <fct> & <fct>\\\\\n", "\\hline\n", "\t1 & 20-29 & 男 & 有 & 兼职 & 金融 & 高中 & 赚钱\\\\\n", "\t2 & 50-59 & 女 & 有 & 兼职 & 科教 & 中学 & 持平\\\\\n", "\t3 & 40-49 & 女 & 无 & 专职 & 科教 & 中学 & 赔钱\\\\\n", "\t4 & 30-39 & 男 & 有 & 兼职 & 工人 & 中专 & 赚钱\\\\\n", "\t5 & 50-59 & 女 & 有 & 专职 & 农民 & 大专 & 赚钱\\\\\n", "\t6 & 40-49 & 女 & 有 & 兼职 & 管理 & 小学 & 赚钱\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 7\n", "\n", "| <!--/--> | 年龄 <fct> | 性别 <fct> | 风险意识 <fct> | 专兼职情况 <fct> | 职业状况 <fct> | 教育程度 <fct> | 投资结果 <fct> |\n", "|---|---|---|---|---|---|---|---|\n", "| 1 | 20-29 | 男 | 有 | 兼职 | 金融 | 高中 | 赚钱 |\n", "| 2 | 50-59 | 女 | 有 | 兼职 | 科教 | 中学 | 持平 |\n", "| 3 | 40-49 | 女 | 无 | 专职 | 科教 | 中学 | 赔钱 |\n", "| 4 | 30-39 | 男 | 有 | 兼职 | 工人 | 中专 | 赚钱 |\n", "| 5 | 50-59 | 女 | 有 | 专职 | 农民 | 大专 | 赚钱 |\n", "| 6 | 40-49 | 女 | 有 | 兼职 | 管理 | 小学 | 赚钱 |\n", "\n" ], "text/plain": [ " 年龄 性别 风险意识 专兼职情况 职业状况 教育程度 投资结果\n", "1 20-29 男 有 兼职 金融 高中 赚钱 \n", "2 50-59 女 有 兼职 科教 中学 持平 \n", "3 40-49 女 无 专职 科教 中学 赔钱 \n", "4 30-39 男 有 兼职 工人 中专 赚钱 \n", "5 50-59 女 有 专职 农民 大专 赚钱 \n", "6 40-49 女 有 兼职 管理 小学 赚钱 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dat=read.csv('d2.1.csv') #d2.1.csv数据读入数据框dat中\n", "head(dat)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 方法三、excel格式数据(最全面)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"package 'openxlsx' was built under R version 3.6.2\"\n" ] }, { "data": { "text/html": [ "<table>\n", "<caption>A data.frame: 6 × 7</caption>\n", "<thead>\n", "\t<tr><th></th><th scope=col>年龄</th><th scope=col>性别</th><th scope=col>风险意识</th><th scope=col>专兼职情况</th><th scope=col>职业状况</th><th scope=col>教育程度</th><th scope=col>投资结果</th></tr>\n", "\t<tr><th></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th></tr>\n", "</thead>\n", "<tbody>\n", "\t<tr><th scope=row>1</th><td>20-29</td><td>男</td><td>有</td><td>兼职</td><td>金融</td><td>高中</td><td>赚钱</td></tr>\n", "\t<tr><th scope=row>2</th><td>50-59</td><td>女</td><td>有</td><td>兼职</td><td>科教</td><td>中学</td><td>持平</td></tr>\n", "\t<tr><th scope=row>3</th><td>40-49</td><td>女</td><td>无</td><td>专职</td><td>科教</td><td>中学</td><td>赔钱</td></tr>\n", "\t<tr><th scope=row>4</th><td>30-39</td><td>男</td><td>有</td><td>兼职</td><td>工人</td><td>中专</td><td>赚钱</td></tr>\n", "\t<tr><th scope=row>5</th><td>50-59</td><td>女</td><td>有</td><td>专职</td><td>农民</td><td>大专</td><td>赚钱</td></tr>\n", "\t<tr><th scope=row>6</th><td>40-49</td><td>女</td><td>有</td><td>兼职</td><td>管理</td><td>小学</td><td>赚钱</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "A data.frame: 6 × 7\n", "\\begin{tabular}{r|lllllll}\n", " & 年龄 & 性别 & 风险意识 & 专兼职情况 & 职业状况 & 教育程度 & 投资结果\\\\\n", " & <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr>\\\\\n", "\\hline\n", "\t1 & 20-29 & 男 & 有 & 兼职 & 金融 & 高中 & 赚钱\\\\\n", "\t2 & 50-59 & 女 & 有 & 兼职 & 科教 & 中学 & 持平\\\\\n", "\t3 & 40-49 & 女 & 无 & 专职 & 科教 & 中学 & 赔钱\\\\\n", "\t4 & 30-39 & 男 & 有 & 兼职 & 工人 & 中专 & 赚钱\\\\\n", "\t5 & 50-59 & 女 & 有 & 专职 & 农民 & 大专 & 赚钱\\\\\n", "\t6 & 40-49 & 女 & 有 & 兼职 & 管理 & 小学 & 赚钱\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 6 × 7\n", "\n", "| <!--/--> | 年龄 <chr> | 性别 <chr> | 风险意识 <chr> | 专兼职情况 <chr> | 职业状况 <chr> | 教育程度 <chr> | 投资结果 <chr> |\n", "|---|---|---|---|---|---|---|---|\n", "| 1 | 20-29 | 男 | 有 | 兼职 | 金融 | 高中 | 赚钱 |\n", "| 2 | 50-59 | 女 | 有 | 兼职 | 科教 | 中学 | 持平 |\n", "| 3 | 40-49 | 女 | 无 | 专职 | 科教 | 中学 | 赔钱 |\n", "| 4 | 30-39 | 男 | 有 | 兼职 | 工人 | 中专 | 赚钱 |\n", "| 5 | 50-59 | 女 | 有 | 专职 | 农民 | 大专 | 赚钱 |\n", "| 6 | 40-49 | 女 | 有 | 兼职 | 管理 | 小学 | 赚钱 |\n", "\n" ], "text/plain": [ " 年龄 性别 风险意识 专兼职情况 职业状况 教育程度 投资结果\n", "1 20-29 男 有 兼职 金融 高中 赚钱 \n", "2 50-59 女 有 兼职 科教 中学 持平 \n", "3 40-49 女 无 专职 科教 中学 赔钱 \n", "4 30-39 男 有 兼职 工人 中专 赚钱 \n", "5 50-59 女 有 专职 农民 大专 赚钱 \n", "6 40-49 女 有 兼职 管理 小学 赚钱 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#library(readxl) #加载包readxl, 需先安装包, install.packages('readxl') \n", "#d2.1=read_excel('mvstats5.xlsx',sheet='d2.1') #读取mvstats5.xlsx表格d2.2数据\n", "library(openxlsx) # 加载包openxlsx,需先安装:install.packages('openxlsx') \n", "d2.1=read.xlsx('mvstats5.xlsx','d2.1') #读取mvstats5.xlsx表格d2.1数据\n", "head(d2.1)" ] }, { "cell_type": "markdown", "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "source": [ "## 2.6 多元数据简单R分析 " ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "outputs": [ { "data": { "text/plain": [ "年龄\n", " * 0-19 20-29 30-39 40-49 50-59 60- \n", " 20 3 92 167 157 51 24 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAGkCAMAAADewwbdAAAAQlBMVEUAAAAAAP8AzQAA//9N\nTU1oaGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD/AP///wD////v\nbhP8AAAACXBIWXMAABJ0AAASdAHeZh94AAAKLklEQVR4nO2dbWOCNhhFsw2LSC2yLf//r05Q\nW6qJ8ARfkrtzPrS2aXLDc6pCWo3zII179wTguSBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASL\ng2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgI\nFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2Bx\nECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB\n4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwO\ngsVBsDgIFgfB4vw/BbtFvHuWD0HjKKy4PxagURqNo7CCYHEQLA6CF/C1q8dTkbr5euB8XgOC\nZ+k3k9PNj4dO6QUgeJbGVZ/deOuwr1zzuAm9BATPUrnu+3bnqsdM5mUgeL6fi31RAgiehXtw\nIax4Dt4fxls8B2dN8lF8TM6iN/0jp/QCTILLXrhecR3cjNfBVb0Tvw52fy1AUHDJIFgcBC+l\n3ThX7x8zlReC4Pl+Y8fzmVZpJ9EIXtBv6Ni45nj+fGhc+8gpvQAEz/cbOlZuvD7q3eZxE3oJ\nCJ7v5y4fJp+nzVlfIiJ4vt/QcXsRfHepMsNjR/B8P1fv2r37PN7sm/tnWRkeO4Ln+/08/DpX\n3V2qzPDYETxP17VtXY+nWs39pegMjx3BhUVYQXBhEVYQXFiEFQQXFmEFwYVFWEHwfL/l/8+Q\n4bEjeJYWwdqCfVctfT1DhseO4AV0S/8MnOGxI3gJ7eRfo58U8SwQXFiEFQQXFmEFwYVFWEFw\nYRFWEFxYhBUEFxZhBcGFRVhBcGERVhBcWIQVBBcWYQXBhUVYQXBhEVYQXFiEFQQXFmEFwYVF\nWEFwYRFWEFxYhBUEFxZhBcGFRVhBcGERVhBcWIQVBBcWYQXBhUVYQXBhEVYQXFiEFQQXFmEF\nwYVFWEFwYRFWEFxYhBUEL2Dx1nYZHjuCZzFsbZfhsSN4FsPWdhkeO4JnMWyMleGxI3i+n4t9\n8bCIJ4LgWbgHiws2bG2X4bEjeJ7lW9tleOwIXsDire0yPHYEFxZhBcGFRVhB8AJYqpQWzFKl\nuGCWKsUFs9AhLnhmqZKt7XKBezCCg7BUKS6YpUp1wSxVqgvOKcIKgguLsILgwiKsILiwCCsI\nLizC++ut2CJcfhjBs/1y2/nM/bkABC8mu63tEBwmeWK5bW2H4DDpE8tsazsEh1kxsby2tkNw\nGJ2zaAQHQTCCC4jwCI6BYAQXEOERHAPBCC4gwiM4BoIRXECER3AMBCO4gAiP4BgIRnABER7B\nMRCM4AIiPIJjIBjBBUR4BMdAMIILiPAIjoFgBBcQ4REcA8EILiDCIzgGghFcQIRHcAwEI7iA\nCI/gGAhGcAERHsExEIzgAiI8gmMgGMEFRHgEx0AwgiNktikHgsOkTiy7TTkQHCZ1YtltyoHg\nMKkTy+4t/REcJnVi2e0fjOAw3IMRHCS7TTkQHCZ5YrltyoHgMCuug/PalAPBYVjJeqxg0/uS\nv6QuTxr25YeTi+B/FlCQ4HbjXL1/asRCEBypS2q/seP5TOv+G0cjuFjBjWuO58+HxrXPiDBO\nCMHhuqT2GzpWbrw+6t3mGRHGCSE4XJfUfu7yYfL5sRE2EBypS2q/oeP2IpilSkHB9a7du8/j\nzb5hqVJR8Pc1rnMVS5Vygn3XtW1dj6dazV2/CC5TcFYRHsHRukhEeARH6yIR4REcrYtEhEdw\ntC4SER7B0bpIRHgER+siEeERHK2LRIRHcLQuEhEewdG6SER4BEfrIhHhERyti0SER3C0LhIR\nHsHRukhEeARH6yIR4REcrYtEhEdwtC4SER7B0bpIRHgER+siEeERHK2LRIRHcLQuEhEewdG6\nSET4IgUvey3xyvIh+I2C/10Cgs8pCA7XZV33TCI8gqN1Wdc9kwiP4Ghd1nW3RjzvvALBkbqs\n626NQDCCEYzgYAqCw3VZ190agWAEIxjBwRQEh+uyrrs1AsEIRjCCgykIDtdlXXdrBIIRjGAE\nB1MQHK7Luu7WCAQjGMEIDqYgOFyXdd2tEQhGMIIRHExBcLguyT2TNohGcCmCEzeINgk2/TIg\neL76FhI3iLYJ/nsBCL5PavfE7WURXIrgmQ2iQw+iN9+fFWz42RJ/eNnP5n8Phney4jl46QbR\n8E6SHwCWbxAN72TFdfDSDaLhnbxgJQveCYLFQbA4CBYHweIgWBwEi4NgcRAsDoLFQbA4CBYH\nweIgWBwEi4NgcRAsDoLFQbA4CBYHweIgWBwEi4NgcRAsDoLFebvguxNoKlc1Vy98at1P48fe\nGtdvndt2kdGvGm2jT1/seTPyVaN93sm8V/ChP06gP8SaTy9w2/z6Xnd5weypcWdMrMZeXXj0\nm0bD6N3E4c3It43WeSfzXsEfrt7U0bf4+HJV57vKTV/cdvzyNOXWffTDXa4L943QuO3woQ6O\nPmm0j96N/SLznjSmzTudNz9Ed1u3/Yq9+LRxwyPZ5/S3/Vies+CPsX4H40uTKzeEjUPcjj5p\ntI/e/gx0O/KkMW3e6bxZ8L5qXfT5qHbDg/fkt/843ebyfhGXT/ff4SfM+I4EgdF/Gu2jt66N\nz3vSuGbeKbxZ8G7rt9Gno98qR7rr76a8hUUzljsywN3GO9Ruvz2eWYWndrfxubz9LPoO4Vqc\nv9yMd5Mve6E+nYtX+tJoH/30rnDjHTMk+Lsxed6JFCt45+redx/2QrV1NT4jBke/NNpHd+7z\neJ013v9vR540Js87kWIFn65p6qRCbcMaJo2po/fDxVFs5LFxzbxTyFlw9V2o3+8udfp8vNSo\ndmnPZf1wIhUe/dyYPPrQIzbyabgV804hZ8Gns9HD8Ww0JHiku1oGWcgwRnj0XwEJoz9v5ERy\nFrwbr6D2V5eM5yqdLlrbm6uc+5x6HYby3o4+abSPfulc3xu5Tp13OjkLDq1kfQsel52+NsPZ\ni4GxV18PT7ORlaxTo330ZvDZj2scoZG/G9PmnU7Ogv3m++Jiwllwf1o4tt4Rqp8hb0f/abSP\nfu7RBEeeNCbOO5msBffjX2Wuvnl5Ijtsj2Wy/1XmOOSmjY3+02gfvb83cr9m5FVkLRjWg2Bx\nECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB\n4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwO\ngsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBY\nHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4vwHuUUkWiVydd4AAAAA\nSUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 210, "width": 240 } }, "output_type": "display_data" }, { "data": { "text/plain": [ " 性别\n", "年龄 男 女\n", " * 9 11\n", " 0-19 2 1\n", " 20-29 69 23\n", " 30-39 101 66\n", " 40-49 89 68\n", " 50-59 24 27\n", " 60- 15 9" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAGkCAMAAADewwbdAAAADFBMVEUAAACt2Ob/5OH////C\nZ2Y1AAAACXBIWXMAABJ0AAASdAHeZh94AAAJZklEQVR4nO3djXbaOBBAYXX9/u+8TcOPbAz2\nYBlGV/ee04ZNSDLRtzKEpLhMhq58ewA7N4HhCQxPYHgCwxMYnsDwBIYnMDyB4QkMT2B4AsMT\nGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB4QkMT2B4\nAsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB4QkM\nT2B4AsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB\n4QkMT2B4AsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYn\nMDyB4QkMT2B4AsMTGJ7A8ASGJzA8geEJDE9geALDEzhaKfOXD2//3Ch7SjZOB5XFy5+L874y\n1rNyTdNDNfBs9crDazKUbqD0/WNc7NV/F36Bsy1otnmSV8HOd+/kDqa0chv8i/vvzxcGel2+\niT5ZWWvrfebvVr8243Lmm+hTPbXcUL4zLq70950ej91fL9c0H2rHRn1+ldmuvV017fdJqYb5\nQCGAtWtWr1scknPBXks51GmFDZb/O/wehtf3qsDf7k2Bm2O5/V2q/z764U8u5VCndGT96+98\ny/yvNp/gvFIOdUJHV/96F/lxHzf7FOeUcqjmtVj7Zwfqpp+kfSmHalyrlV8+RClwilqu++yx\nq+UHFvgrNf4Cy/0DLj9yzqXMOVW7mn99vS1Yb/PGOuOomfNI/LS+pg1W/vw54+vririnWaP9\n9T0FuKtV62jUYOXHV+F+Jg32y6twN4MGu/meBNzNwvUyZ6xy9x1duJMxY9W8owv3MWWshe9Z\nwH2sXRdDBlsCnyfcwep1MGK0B9+h93AHIwZb8R1ZOP+EwVZ9TwPOv37pBwy27juwcPb5gj3z\nHfcgnX2+WM99h93CyccL9gL4ROHUa5h6uGivfEfdw6mHC/ba9zzg1IuYebZgG76DbuHMswXb\nBB5SOPFowbZ9hzxI550s2g7gEYXTDhZtj++IB+m0gwXb5zvgFs46V7CdvgNu4axzBdsNPJxw\n0rGC7fcVuMsCwKMJ55wqWMR3tB8c5pwqmMDPyzlVrJjvYMIphwoWBR7qN+FTDhUsDDyScMaZ\ngsV9Be6qN4AHEk44UrR3gMf5V8MJR4qWCDjhcuabKNpbvuNs4XwTRXsT+BzhfMuZb6Jg7/oK\n3ElvA5/zFFonfMxj5Zso2PvAYwinGyiawK9LN1C0A8BnCKdbz3QDBTvie4ZwuvVMN1CwbMDp\nFjTbPNGOAQ+whbPNE+0gcHvhbAuabZ5oAm+UbZ5gR33bC2db0GzzBDsOTBdONk60BsCthZOt\naLJxogm8VbJxorUAbiycbEWTjROtCXBb4WQrmmycaAJvlWycaG2AmwonW9Fk40RrBNxSONmK\nJhsnmsBbJRsnWivgP6Vd316TecnGmVWv1eXywzl7mwH/16pkK5psnOkyUblfnOqLZZqfmLnZ\nIbqZr8BbVce5Mt2o78Bzd4E3SjbO9DNR+ffX7DbteulOfrlyOl+Bt/qxncp1s9Y7d5pt79//\nFnijZONMtx08263XF2U5r8BbJRtnqoFLJXs7Vi+unM5X4K3qHVzdd769daoO3EXgrZKNM12B\nlw8cVHe17rytflzY0lfgrUq9YavX/u7bxd1ogbdKNs50B64f66h28kK/ya90gH0zA8++JSqz\nN1fXTuYr8GZrO7gGnk8s8EbZ5vmplPstbQVcPWh5n7rBL0Y39RV4u9m3SHfg6zdI81thgTfK\nNs90+4HCAvj+MMfs8axswOnWM91AN9jHH59Xj2/cX5fLV+DNysOFV1c6Lixw8o7+A+G2vgI3\nT+DXpRso3CFhvK/AAmcvE3DC1Uw4UrBDT5TV1lfgUzryXHcCd9CBpyNt7CvwOb3/jMJ8X4EF\nzt/bz/ne2Ffgs3r3tA0D+I4MPMQGZgC/eWadEXwFFriL3jl/4RC+AgvcR/FzCI/hK7DAnRQ+\nz/sYvsMCj+LLAQ4Kw38b+l7i0aJFhIfZwCTgiPAwG1hggTtqt/A4vgLDfVnAe4UH8oUB7xQW\nuN92CYOf2O6h7PNF2wM8ki8OeI8w97mDV8o/YbTNpzccyhcIvLmJsc/ev1oPM4Z7KTyWr8AH\nfLtYuy6GDPdKuBVwJyvXyZjRnt/TGsyXCvx8E7cB7uPw/FM3g4ZbF27k++0vbn8djRpt9TDd\nBLinRetp1nArwg2A+zk8/9TVsOEehFv4zj7BVD+D9ZMTLH61TLOc0PIwfRz4ang5E9v8uY1v\nL/KchDTLHKc1Iz7se30q43L/c71YPRvu7a8EZZnjxCrig8D3Z5v/PTQvzv3z7ASLXy3NIGd2\nIz4EXG/QcnnG8rUj9MMJFr9aljlOrhz2nYvNgS9H6MubHk6w+NUyzXJm5Rjww5nHp9kJ2n5f\n9+wEi18t0yyn9vcw/bbv4/F2ZQdXR+vLLfLnvrgX5ZjiI/3srza8F+A9J1j8elnm+FBh4ydS\na7fBl2+Ap1x3o7PM8bn2E7/Yh6t3sp6eYPGbZZnjk5VdB+uXB9m1O1nVYia6I51mkE/3HHnX\nbWi5PQxdn8Tp/sHPGjtcnkm+UFlt37vebnFLvXHrBy1zLG2OKfqr3A/T9Z2s6zdIeW6Fc0zR\nXdV3vtVR+tkJFr9Zjil6q/6J0uJovHaCxW+WY4pue3UkzrG0Oaaw0xIYnsDwBIYnMDyB4QkM\nT2B4AsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB\n4QkMT2B4AsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYn\nMDyB4QkMT2B4AsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDw\nBIYnMDyB4QkMT2B4AsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMY\nnsDwBIYnMDyB4QkMT2B4AsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgC\nwxMYnsDwBIYnMDyB4QkMT2B4AsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxP\nYHj/Ay5665/PTxVkAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 210, "width": 240 } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAGkCAMAAADewwbdAAAAQlBMVEUAAAAAAP8AzQAA//9N\nTU1oaGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD/AP///wD////v\nbhP8AAAACXBIWXMAABJ0AAASdAHeZh94AAAIyklEQVR4nO3djXLaRhRA4W0rfm1iaMv7v2oN\nxsEOwkGru9bV6TkzTehMxV7rizCoyaYcDV2ZegBrm8DwBIYnMDyB4QkMT2B4AsMTGJ7A8ASG\nJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB4QkMT2B4AsMTGJ7A\n8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB4QkMT2B4AsMT\nGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB4QkMT2B4\nAsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMY3pyAS29TT5W8OZ2f\n8kdPc/oCpqjR+WlyjQlc0TecH4GnTGB4AsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicw\nPIHhCQxPYHgCwxMY3vyB/a20XzZ/4L9uE/iawPAEhicwPIHhCQxPYHj15+LHdnX+zLna/Gi1\nxK9PJPDwas/FYfHhvsKyyRK3TyTw8GrPxaZ0zy/nR/tdVzYtlrh9IoGHV3suuvLy8/FL6Vos\ncftEAg+v9lx8ut/79c1fgafMKxjeiO/Bu/35kd+DU1d9LpYf3kUvDk2WuHkigYc34nPw5vw5\nuFtt/RycOO9kwZv/NkoCf1n1udivS7c9Hp8WpfvyLZZX8LRV36rsTtfm09Zblcmr/5j0et1u\nurI+HA8bPyblrf5Gx/nocv6A5I2OvI27VXl5A+WtyryNvYJPPx68gvM29nvw5nB5HL/E7RMJ\nPDzfRcPzczA8b1XCExiewPAEhicwPIHhCQxPYHgCwxMYnsDwsgL37o4k8PDSAv95m8AVCdy+\nSf/eY4Hb1zfit80ocPsE7jtI4KDFky4xV+Deb7cC9xw0V+AHR5wBcNttlASOGqjyuNbbKAkc\nNVDlca23URI4aqDK41pvwiJw1EC1x5V7/xKzhMBRA1Ue5xV8Z24KcOttlASOGqj2wMbbKAkc\nNVD1kW23URI4aqCkSwgcNVCjpx37fz4Fjhqo9sDD5vTWebsoZfncYAmBowaqPG7fvV6Zb38K\n3FuVH+emAK/L6vD6w3p//qPgfkz6OTcF+LyB0mUXpRabsAgcNVDtcacDu/LhX2KXEDhqoMrj\n1qdbldu3+5WHr78JCzxH4JfSbV6Oq+5VeLcou/AlBI4aqPbAXXf9oLuNX0LgqIHqD31en39X\nx2q7b7CEwFEDJV1C4KiBki4hcNRASZcQOGqgpEsIHDVQ0iUEjhoo6RICRw2UdAmBowZKuoTA\nUQMlXULgqIGSLiFw1EBJlxA4aqCkSwgcNVDSJQSOGijpEgJHDZR0CYGjBkq6hMBRAyVdQuCo\ngZIuIXDUQEmXEDhqoOoj3Uapd24KsNso3ZmbAuw2SnfmpgC7CcuduSnAbqN0Z24KsFfwnbkp\nwG6jdGduCrDbKN2ZGwPsNkr9c3OA2y4hcNRAjZ7WbZQwwL8FFFjgnoMEDhqo9rjH/xovgecI\n/KMTuHduCvDxsCrL850OX6I/zY0BPh6fSzntUinwp7lBwMf98rSfocCf5iYBn3ZC63YCf5qb\nBXx8Wfz+RobAMwY+7Wko8Me5ccCNlhA4aqCkSwgcNVDSJQSOGijpEgJHDZR0CYGjBkq6hMBR\nAyVdQuCogZIuIXDUQEmXEDhqoKRLCBw1UNIlBI4aKOkSAkcNlHQJgaMGSrqEwFEDJV2CD9xX\ni4EaPGfEEnzgf24TWODhAzV4zoglBI4aqPpIt1HqnZsC7DZKd+amAOfeRum73qL2zE0Bzr0J\nS8/Ja3L2euamAOfeRul7gHtfJyjAXsGPzzhL4NzbKAl8HbL2wNTbKAl8HbL6yMzbKAl8HbLB\nc0YsIXDUkA2e83icehslga9D1h54WJey3F2e5H/6MYkMfHjbhGX19iQC44A35elV+ak734YW\nmAfcvR247xZ7gYnA76aH5VJgIvCivN/cWCwFBgI/lfXl0b4sBeYBv77Lej90l28rQ4GvQ1Yf\n+bJ6f7RfCwwEbrtEA+Dw3+Uh8IglGgD/e5vAky0hcFACj/jCBK5fQuCgBB7xhQlcv4TAQQk8\n4gsTuH6JCYEf/sAs8IglBA5K4NulBf6GJQQO6puBe09e3wz/T+CHl647+40S+GHgnhFHvtMX\nuGdpgeuXEFjgy38osMACDzz7jRJY4J6DBBZY4IFnv1ECC9xzkMACCzzw7DdK4HkCV21G2g/c\nl8DTAlduRtqP+fdtAk8MXLkZ6WyBx7zKzBK4civD2QL3jPjwjLME/s1mpPde3h6/Or6n/i8t\nV5VC719N5XEDrmCbshHfgx/djNSmrPoF4PHNSG3KRnwOfnQzUpuyb7iTZVMmMDyB4QkMT2B4\nAsMTGJ7A8ASGJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIY3O+DS+zBf\nY/9UYFRJxni8uD9Y2bYsw2WZ4+HK9cfUs2cZLsscDzcT4DQvL1nmeLiZvESXmwcTNfX6g8t+\nBUdvwTB6nmmXH1524LfeWKfGPc8w9QBDy3NtfNWHX4YTl2GGQaW5NL5M4HFlB774ZpgywwxD\nSvUG5m55LuAcQwyufPopXUXgkSUHvrzQTD3EuRxTDKz88nPKkhBnmGFo7ycuxQm812m4DMTT\nTzC481l7/ydpeX4NTj7A4H6euulP3r0+TDb5jJMPMKwPqlknT/YLL9UwFp/A8ASGJzA8geEJ\nDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB4QkMT2B4AsMTGJ7A8ASGJzA8\ngeEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB4QkMT2B4AsMTGJ7A8ASG\nJzA8geEJDE9geALDExiewPAEhicwPIHhCQxPYHgCwxMYnsDwBIYnMDyB4QkMT2B4AsMTGJ7A\n8ASGJzA8geH9B+oP0/TUEIwDAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 210, "width": 240 } }, "output_type": "display_data" }, { "data": { "text/plain": [ " 投资结果 持平 赔钱 赚钱\n", "年龄 性别 \n", "* 男 4 3 2\n", " 女 3 7 1\n", "0-19 男 0 0 2\n", " 女 1 0 0\n", "20-29 男 21 17 31\n", " 女 10 7 6\n", "30-39 男 31 30 40\n", " 女 30 20 16\n", "40-49 男 31 30 28\n", " 女 25 30 13\n", "50-59 男 5 11 8\n", " 女 8 10 9\n", "60- 男 7 5 3\n", " 女 2 5 2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ " 投资结果 持平 赔钱 赚钱\n", "性别 年龄 \n", "男 * 4 3 2\n", " 0-19 0 0 2\n", " 20-29 21 17 31\n", " 30-39 31 30 40\n", " 40-49 31 30 28\n", " 50-59 5 11 8\n", " 60- 7 5 3\n", "女 * 3 7 1\n", " 0-19 1 0 0\n", " 20-29 10 7 6\n", " 30-39 30 20 16\n", " 40-49 25 30 13\n", " 50-59 8 10 9\n", " 60- 2 5 2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ " 年龄 * 0-19 20-29 30-39 40-49 50-59 60-\n", "性别 投资结果 \n", "男 持平 4 0 21 31 31 5 7\n", " 赔钱 3 0 17 30 30 11 5\n", " 赚钱 2 2 31 40 28 8 3\n", "女 持平 3 1 10 30 25 8 2\n", " 赔钱 7 0 7 20 30 10 5\n", " 赚钱 1 0 6 16 13 9 2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAGkCAMAAADewwbdAAAAM1BMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD///89ODILAAAACXBIWXMAABJ0\nAAASdAHeZh94AAAKU0lEQVR4nO2d0WKiOhRFgwJai1z//2uvELVUI5aDSM6etR6mtoHskCUi\nmXoaTiBNWHsAsCwIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgI\nFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2Bx\nECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB\n4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwO\ngsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDj/rOBwx9rj\nWQrZA3sFgud1m/3cIdhThAEEe4owgGBPEQYQ7CnCAII9RRhAsKcIAwj2FGEAwZ4iDCDYU4QB\nBHuKMIBgTxEGEOwpwgCCPUUYQLCnCAMI9hRhAMGeIgwg2FOEAQR7ijCAYE8RBhDsKcIAgj1F\nGJgm2O/TAcEIdhBhAMGeIgwg2FOEAQR7ijCAYE8RBhDsKcIAgl/xvSv7Yy3r76UilgTB47Sb\nweFuF4lYFgSPU4fiq+kfHQ9FqJeIWBYEj1OE5va4CcUSEcuC4Bf7hWffvC1iWRA8DmewE2Zc\ngw/H/hHX4KwxD3U7ONxNu0jEoiD4Fd91fx9clDvugzOGlSwEm7rNfjYQ/IJjFYrd6bTfhGL0\nLRZn8LqYlyqL7jj3u/5wWarMF/tt0vm8rYtQtae25jYpX+wLHf3eob9BYqEjX+YtVV6OlKXK\nfJl7Bnf/tpzB+TL3Gly3l8fvj1gWBI/Du2gncB+MYAcRBhDsKcIAgj1FGECwpwgDCPYUYQDB\nniIMINhThAEEe4owgGBPEQYQ7CnCAII9RRhAsKeImLOgMgSvGxFzEJwAwaat/QhHsGnr/36D\n4E+A4BQIRrCDiJgzS9n43gheNyLmLHhO/ouCsyujhOAU5t+qzK+MEoJT2H8vOrsySghOYf9k\nQ3ZFWBCcwjq0DMsoITgFZzCCk2RYRgnBKcxDy6+MEoJTzLgPzq2MEoJTsJKFYFO3f5/pZTIR\nfME8tLbu3jrvNiFsvxaKmAiCU1iHdizOMxg/Bc5SpaLgKpTt+Z/q2H8UnNukbLGvZLWnaxWl\nTIqwIDjFrKXKIgy+eXvEVBCcwv4S3ZzfYsX1ynb8IozgNbEOrQlF3ZzK4mz4sAmHJSKmguAU\n5qEdip/D3S0TMREEp5gxtK+q/62OcndcLGISCE7BUiWCHUTEHAQnQDCCHUTEHAQnQDCCHUTE\nHAQnQDCCHUTEHAQnQDCCHUTEHAQnQDCCHUTEHAQnQDCCHUTEHAQnQDCCHUTEHAQnQDCCHUTE\nHAQnQDCCn0AZJWnBlFESF0wZJXHBFGERF0wZJXHBnMHigimjJC6YMkrqgimjpC44p4iYg+AE\nCw1twkwvk4ngC/OH9lIggtcEwQhO7/f3yUTwmliH9l38OuAlIqaC4BTmobVl2PYrHbxEawo+\nnb5C6KpUIlhV8Om47eoZIlhWcFcJrTggWFjwqdm8nEkEr8rsoVUI1hacRUTMQXACBCPYQUTM\nQXACBCPYQUTMQXACBCPYQUTMQXACBCPYQUTMQXACBCPYQUTMQXACBCPYQUTMQXACBCPYQUTM\nyVXw/c4ffTog+AOC1zzfEYxgBxExB8GpcPOelFGSFkwZJXHBlFFa6unwZqxhFGERF+ygjNK4\ncASP4+AMXk+ZgmAHZZQQ3I/FumP+ZZQQ3I/FvGf2ZZQQ3I9FIiLmZKPsHxD86/iWiRjPRPB1\nLNYd2yqE7eHSSZa3SQjux2Lcr41FWMrYCYJnbL0s9tuk/dnyvuiXoRE8Z+tlsS909F+OxeaI\nYEXBV6ftdotgRcGbcF3c2GwRLCh4H6rLo2PYInjO1stiDqtvVg8BwXO2XhZ7WFNeHx0rBM/Y\nellYqsxu6zfPynu7Wyki5mSrDMHvyclWGYLfk5OtMgS/JydbZQh+T062yhD8npxslSH4PTnZ\nKvt3Bd8f26zR5KvsHxY8fugTc7JVhmAEI/gPOdkq+4cETzv0iTnZKpu29XuFI9jZ1pNnZd7u\nUyMQjGB7TjYSEIzgD80Jgt1tPXlW5u0+NQLBCLbnZCMBwQj+0Jwg2N3Wk2dl3u5TIxCMYHtO\nNhIQjOAPzckcwaZipPMO/UVONhIUBBuLkSLYi2BjMdJ5hz4uPB8JCoKNpQzzmSivW0/FuvuL\nYqS/Rvzs5wlGemFrEx84g2FNZlyD/1qMFNbE/ALw92KksCYz7oP/WowU1uQDK1mwJggWB8Hi\nIFgcBIuDYHEQLA6CxUGwOAgWB8HiIFgcBIuDYHEQLA6CxUGwOAgWB8HiIFgcBIuDYHEQLA6C\nxUGwOAgWZ1XB4+F1EYr67lNP+/DTuD0YItsqhKp5EnDXODVg+HHPh77vGk2Dt7Ce4GN7Dm+P\nT9vjp9s2v37WXD8tGxt301OLfscmHfDQOCmgGTh86Pux0TB4C+sJ3oZyUz4v7/EdiubUFGH4\nybbzt3G8+7Btu/OtSe/7nLr7u9Z1KJMBg0ZLQBNuf3D3se9Bo3nwJlZ8iW6qUH0//eBpHboX\nsa/hE31/+1vj237qjtM/l1z0f5m+7+UxYNBoCdj/dPXY96DRPHgTKwo+FPvw/EpUhu7Ve/DE\nP4+1vhaLuH4ZL+/zlL4iQSLgp9ESsA/768PHvgeNMwc/kRUF76pT9fxC9FtlT3P/U2P9irqf\n7Cd9jDaOUoZDdX5nlR7faOOSZHublJ6Gy7eb/gz5Ns3RVwjP5/naaAmIdeH6EzMl+NY4Z/DT\n8Sl4F8r21GxNc7Qvi/56mAy4NloCQvg632n1rwCPfQ8a5wx+Oj4Fxxua0jpHVVrCoNEe0HY3\nR8/67htnDn4i2QoubnM0rBZ1/Xq+yyh25stY272RSgdcGmcEdPs86zt2OG/wU4fzkRQD8Y3o\n8fxGNCW4p7lbBvk7XTfpgF8ZpoAl+zaQreBdfwt1uLtbvExQvGPdP9zivCTueOwm9zFg0GgJ\nuO5ejvVdzhi8iWwFp1ayboL7NafvTffGZRr9jm3ZXWafrGTFRktA3fls+zWOVN+3RvPgTWQr\n+LS53VcMuAhu46qx4Rwofnp9DPhptARc9qmTfQ8a7YO3kK/gtv8PmbsfXq9hx+o8Q6b/kDn3\nutk/C/hptAS0Y3238/o2k69geAsIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2Bx\nECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB\n4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwO\ngsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBYHASLg2BxECwOgsVBsDgIFgfB4iBY\nHASLg2BxECzO/3BGNj/lFXDuAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { "height": 210, "width": 240 } }, "output_type": "display_data" } ], "source": [ "attach(d2.1) #绑定数据\n", " table(年龄) #一维列联表\n", " barplot(table(年龄),col=1:7)#条形图\n", " pie(table(投资结果))#饼图\n", " table(年龄,性别) #二维列联表\n", " barplot(table(年龄,性别),beside=T,col=1:7)#以性别分组的年龄条图\n", " barplot(table(性别,年龄),beside=T,col=1:2)#以年龄分组的性别条图\n", " ftable(年龄,性别,投资结果) #以年龄、性别排列的结果频数三维列联表\n", " ftable(性别,年龄,投资结果)#以性别、年龄排列的结果频数三维列联表\n", " (ft=ftable(性别,投资结果,年龄))#显示以性别、结果排列的年龄频数三维列联表\n", "detach(d2.1) #解除数据绑定" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "extensions": { "jupyter_dashboards": { "version": 1, "views": { "grid_default": { "hidden": true }, "report_default": {} } } } }, "outputs": [], "source": [] } ], "metadata": { "extensions": { "jupyter_dashboards": { "activeView": "grid_default", "version": 1, "views": { "grid_default": { "cellMargin": 10, "defaultCellHeight": 20, "maxColumns": 12, "name": "grid", "type": "grid" }, "report_default": { "name": "report", "type": "report" } } } }, "hide_input": false, "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.6.1" }, "toc": { "base_numbering": 1, "nav_menu": { "height": "236px", "width": "358px" }, "number_sections": false, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "281px", "left": "907px", "top": "137.667px", "width": "221px" }, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "position": { "height": "144px", "left": "916px", "right": "20px", "top": "573px", "width": "350px" }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }
Copy
Edit
Web IDE
Raw
Blame
History
jdwbh
authored
2020-02-19 13:55
.
Jupyter notebook模板
Go
Comment (
0
)
Loading...
Sign in
for post a comment
Report
Report success
We will send you the feedback within 2 working days through the letter!
Please fill in the reason for the report carefully. Provide as detailed a description as possible.
Type
Please select a report type
Reason
Cancel
Send
About
《多元统计分析及R语言建模》(第5版)
spread
retract
http://rstat.leanote.com/cate/└─多元统计分析
R
http://rstat.leanote.com/cate/└─多元统计分析
Save
Cancel
Releases
No release
Contributors
All
Activities
load more
can not load any more
R
1
https://git.oschina.net/Py-R/mvstats5.git
git@git.oschina.net:Py-R/mvstats5.git
Py-R
mvstats5
mvstats5
master
Going to Help Center
Search
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
See more results
Share to
Comment
Repository Report
Back to the top
Login prompt
This operation requires login to the code cloud account. Please log in before operating.
Go to login
No account. Register
Comment ( 0 )