## HDT3213 / DataMinerDemo .gitee-modal { width: 500px !important; }

Explore and code with more than 6 million developers，Free private repositories ！：）
bpnn.py 4.44 KB
HDT3213 authored 2017-05-10 15:52 . working on lstm
import math
import random

random.seed(0)

def rand(a, b):
return (b - a) * random.random() + a

def make_matrix(m, n, fill=0.0):
mat = []
for i in range(m):
mat.append([fill] * n)
return mat

def sigmoid(x):
return 1.0 / (1.0 + math.exp(-x))

def sigmoid_derivative(x):
return x * (1 - x)

class BPNeuralNetwork:
def __init__(self):
self.input_n = 0
self.hidden_n = 0
self.output_n = 0
self.input_cells = []
self.hidden_cells = []
self.output_cells = []
self.input_weights = []
self.output_weights = []
self.input_correction = []
self.output_correction = []

def setup(self, ni, nh, no):
self.input_n = ni + 1
self.hidden_n = nh
self.output_n = no
# init cells
self.input_cells = [1.0] * self.input_n
self.hidden_cells = [1.0] * self.hidden_n
self.output_cells = [1.0] * self.output_n
# init weights
self.input_weights = make_matrix(self.input_n, self.hidden_n)
self.output_weights = make_matrix(self.hidden_n, self.output_n)
# random activate
for i in range(self.input_n):
for h in range(self.hidden_n):
self.input_weights[i][h] = rand(-0.2, 0.2)
for h in range(self.hidden_n):
for o in range(self.output_n):
self.output_weights[h][o] = rand(-2.0, 2.0)
# init correction matrix
self.input_correction = make_matrix(self.input_n, self.hidden_n)
self.output_correction = make_matrix(self.hidden_n, self.output_n)

def predict(self, inputs):
# activate input layer
for i in range(self.input_n - 1):
self.input_cells[i] = inputs[i]
# activate hidden layer
for j in range(self.hidden_n):
total = 0.0
for i in range(self.input_n):
total += self.input_cells[i] * self.input_weights[i][j]
self.hidden_cells[j] = sigmoid(total)
# activate output layer
for k in range(self.output_n):
total = 0.0
for j in range(self.hidden_n):
total += self.hidden_cells[j] * self.output_weights[j][k]
self.output_cells[k] = sigmoid(total)
return self.output_cells[:]

def back_propagate(self, case, label, learn, correct):
# feed forward
self.predict(case)
# get output layer error
output_deltas = [0.0] * self.output_n
for o in range(self.output_n):
error = label[o] - self.output_cells[o]
output_deltas[o] = sigmoid_derivative(self.output_cells[o]) * error
# get hidden layer error
hidden_deltas = [0.0] * self.hidden_n
for h in range(self.hidden_n):
error = 0.0
for o in range(self.output_n):
error += output_deltas[o] * self.output_weights[h][o]
hidden_deltas[h] = sigmoid_derivative(self.hidden_cells[h]) * error
# update output weights
for h in range(self.hidden_n):
for o in range(self.output_n):
change = output_deltas[o] * self.hidden_cells[h]
self.output_weights[h][o] += learn * change + correct * self.output_correction[h][o]
self.output_correction[h][o] = change
# update input weights
for i in range(self.input_n):
for h in range(self.hidden_n):
change = hidden_deltas[h] * self.input_cells[i]
self.input_weights[i][h] += learn * change + correct * self.input_correction[i][h]
self.input_correction[i][h] = change
# get global error
error = 0.0
for o in range(len(label)):
error += 0.5 * (label[o] - self.output_cells[o]) ** 2
return error

def train(self, cases, labels, limit=10000, learn=0.05, correct=0.1):
for j in range(limit):
error = 0.0
for i in range(len(cases)):
label = labels[i]
case = cases[i]
error += self.back_propagate(case, label, learn, correct)

def test(self):
cases = [
[0, 0],
[0, 1],
[1, 0],
[1, 1],
]
labels = [[0], [1], [1], [0]]
self.setup(2, 5, 1)
self.train(cases, labels, 10000, 0.05, 0.1)
for case in cases:
print(self.predict(case))

if __name__ == '__main__':
nn = BPNeuralNetwork()
nn.test()