8 Star 40 Fork 10

Gitee 极速下载 / Caire

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/esimov/caire
克隆/下载
carver.go 10.29 KB
一键复制 编辑 原始数据 按行查看 历史
esimov 提交于 2024-04-24 14:31 . Code refactoring and improvements
package caire
import (
"fmt"
"image"
"image/color"
"image/draw"
"math"
"github.com/esimov/caire/utils"
pigo "github.com/esimov/pigo/core"
)
// maxFaceDetAttempts defines the maximum number of attempts of face detections
const maxFaceDetAttempts = 20
var (
detAttempts int
isFaceDetected bool
)
var (
sobel *image.NRGBA
energySeams = make([][]Seam, 0)
)
// Carver is the main entry struct having as parameters the newly generated image width, height and seam points.
type Carver struct {
Points []float64
Seams []Seam
Width int
Height int
}
// Seam struct contains the seam pixel coordinates.
type Seam struct {
X int
Y int
}
// NewCarver returns an initialized Carver structure.
func NewCarver(width, height int) *Carver {
return &Carver{
make([]float64, width*height),
nil,
width,
height,
}
}
// Get energy pixel value.
func (c *Carver) get(x, y int) float64 {
px := x + y*c.Width
return c.Points[px]
}
// Set energy pixel value.
func (c *Carver) set(x, y int, px float64) {
idx := x + y*c.Width
c.Points[idx] = px
}
// ComputeSeams compute the minimum energy level based on the following logic:
//
// - traverse the image from the second row to the last row
// and compute the cumulative minimum energy M for all possible
// connected seams for each entry (i, j).
//
// - the minimum energy level is calculated by summing up the current pixel value
// with the minimum pixel value of the neighboring pixels from the previous row.
func (c *Carver) ComputeSeams(p *Processor, img *image.NRGBA) (*image.NRGBA, error) {
var srcImg *image.NRGBA
p.GuiDebug = image.NewNRGBA(img.Bounds())
width, height := img.Bounds().Dx(), img.Bounds().Dy()
sobel = c.SobelDetector(img, float64(p.SobelThreshold))
dets := []pigo.Detection{}
if p.FaceDetector != nil && p.FaceDetect && detAttempts < maxFaceDetAttempts {
var ratio float64
if width < height {
ratio = float64(width) / float64(height)
} else {
ratio = float64(height) / float64(width)
}
minSize := float64(utils.Min(width, height)) * ratio / 3
// Transform the image to pixel array.
pixels := c.rgbToGrayscale(img)
cParams := pigo.CascadeParams{
MinSize: int(minSize),
MaxSize: utils.Min(width, height),
ShiftFactor: 0.1,
ScaleFactor: 1.1,
ImageParams: pigo.ImageParams{
Pixels: pixels,
Rows: height,
Cols: width,
Dim: width,
},
}
if p.vRes {
p.FaceAngle = 0.2
}
// Run the classifier over the obtained leaf nodes and return the detection results.
// The result contains quadruplets representing the row, column, scale and detection score.
dets = p.FaceDetector.RunCascade(cParams, p.FaceAngle)
// Calculate the intersection over union (IoU) of two clusters.
dets = p.FaceDetector.ClusterDetections(dets, 0.1)
if len(dets) == 0 {
// Retry detecting faces for a certain amount of time.
if detAttempts < maxFaceDetAttempts {
detAttempts++
}
} else {
detAttempts = 0
isFaceDetected = true
}
}
// Traverse the pixel data of the binary file used for protecting the regions
// which we do not want to be altered by the seam carver,
// obtain the white patches and apply it to the sobel image.
if len(p.MaskPath) > 0 && p.Mask != nil {
for i := 0; i < width*height; i++ {
x := i % width
y := (i - x) / width
r, g, b, _ := p.Mask.At(x, y).RGBA()
if r>>8 == 0xff && g>>8 == 0xff && b>>8 == 0xff {
if isFaceDetected {
// Reduce the brightness of the mask with a small factor if human faces are detected.
// This way we can avoid the seam carver to remove
// the pixels inside the detected human faces.
sobel.Set(x, y, color.RGBA{R: 225, G: 225, B: 225, A: 255})
} else {
sobel.Set(x, y, color.White)
}
}
}
}
// Traverse the pixel data of the binary file used to remove the image regions
// we do not want to be retained in the final image, obtain the white patches,
// but this time inverse the colors to black and merge it back to the sobel image.
if len(p.RMaskPath) > 0 && p.RMask != nil {
for i := 0; i < width*height; i++ {
x := i % width
y := (i - x) / width
r, g, b, _ := p.RMask.At(x, y).RGBA()
// Replace the white pixels with black.
if r>>8 == 0xff && g>>8 == 0xff && b>>8 == 0xff {
if isFaceDetected {
// Reduce the brightness of the mask with a small factor if human faces are detected.
// This way we can avoid the seam carver to remove
// the pixels inside the detected human faces.
sobel.Set(x, y, color.RGBA{R: 25, G: 25, B: 25, A: 255})
} else {
sobel.Set(x, y, color.Black)
}
p.GuiDebug.Set(x, y, color.Black)
} else {
p.GuiDebug.Set(x, y, color.Transparent)
}
}
}
// Iterate over the detected faces and fill out the rectangles with white.
// We need to trick the sobel detector to consider them as important image parts.
for _, face := range dets {
if (p.NewHeight != 0 && p.NewHeight < face.Scale) ||
(p.NewWidth != 0 && p.NewWidth < face.Scale) {
return nil, fmt.Errorf("%s %s",
"cannot resize the image to the specified dimension without face deformation.\n",
"\tRemove the face detection option in case you still wish to resize the image.")
}
if face.Q > 5.0 {
scale := int(float64(face.Scale) / 1.7)
rect := image.Rect(
face.Col-scale,
face.Row-scale,
face.Col+scale,
face.Row+scale,
)
draw.Draw(sobel, rect, &image.Uniform{color.White}, image.Point{}, draw.Src)
draw.Draw(p.GuiDebug, rect, &image.Uniform{color.White}, image.Point{}, draw.Src)
}
}
// Increase the energy value for each of the selected seam from the seams table
// in order to avoid picking the same seam over and over again.
// We expand the energy level of the selected seams to have a better redistribution.
if len(energySeams) > 0 {
for i := 0; i < len(energySeams); i++ {
for _, seam := range energySeams[i] {
sobel.Set(seam.X, seam.Y, &image.Uniform{color.White})
}
}
}
if p.BlurRadius > 0 {
srcImg = c.StackBlur(sobel, uint32(p.BlurRadius))
} else {
srcImg = sobel
}
for x := 0; x < c.Width; x++ {
for y := 0; y < c.Height; y++ {
r, _, _, a := srcImg.At(x, y).RGBA()
c.set(x, y, float64(r)/float64(a))
}
}
var left, middle, right float64
// Traverse the image from top to bottom and compute the minimum energy level.
// For each pixel in a row we compute the energy of the current pixel
// plus the energy of one of the three possible pixels above it.
for y := 1; y < c.Height; y++ {
for x := 1; x < c.Width-1; x++ {
left = c.get(x-1, y-1)
middle = c.get(x, y-1)
right = c.get(x+1, y-1)
min := math.Min(math.Min(left, middle), right)
// Set the minimum energy level.
c.set(x, y, c.get(x, y)+min)
}
// Special cases: pixels are far left or far right
left := c.get(0, y) + math.Min(c.get(0, y-1), c.get(1, y-1))
c.set(0, y, left)
right := c.get(0, y) + math.Min(c.get(c.Width-1, y-1), c.get(c.Width-2, y-1))
c.set(c.Width-1, y, right)
}
return srcImg, nil
}
// FindLowestEnergySeams find the lowest vertical energy seam.
func (c *Carver) FindLowestEnergySeams(p *Processor) []Seam {
// Find the lowest cost seam from the energy matrix starting from the last row.
var (
min = math.MaxFloat64
px int
)
seams := make([]Seam, 0)
// Find the pixel on the last row with the minimum cumulative energy and use this as the starting pixel
for x := 0; x < c.Width; x++ {
seam := c.get(x, c.Height-1)
if seam < min {
min = seam
px = x
}
}
seams = append(seams, Seam{X: px, Y: c.Height - 1})
var left, middle, right float64
// Walk up in the matrix table, check the immediate three top pixels seam level
// and add that one which has the lowest cumulative energy.
for y := c.Height - 2; y >= 0; y-- {
middle = c.get(px, y)
// Leftmost seam, no child to the left
if px == 0 {
right = c.get(px+1, y)
if right < middle {
px++
}
// Rightmost seam, no child to the right
} else if px == c.Width-1 {
left = c.get(px-1, y)
if left < middle {
px--
}
} else {
left = c.get(px-1, y)
right = c.get(px+1, y)
min := math.Min(math.Min(left, middle), right)
if min == left {
px--
} else if min == right {
px++
}
}
seams = append(seams, Seam{X: px, Y: y})
}
// compare against c.Width and NOT c.Height, because the image is rotated.
if p.NewWidth > c.Width || (p.NewHeight > 0 && p.NewHeight > c.Width) {
// Include the currently processed energy seam into the seams table,
// but only when an image enlargement operation is commenced.
// We need to take this approach in order to avoid picking the same seam each time.
energySeams = append(energySeams, seams)
}
return seams
}
// RemoveSeam remove the least important columns based on the stored energy (seams) level.
func (c *Carver) RemoveSeam(img *image.NRGBA, seams []Seam, debug bool) *image.NRGBA {
bounds := img.Bounds()
// Reduce the image width with one pixel on each iteration.
dst := image.NewNRGBA(image.Rect(0, 0, bounds.Dx()-1, bounds.Dy()))
for _, seam := range seams {
y := seam.Y
for x := 0; x < bounds.Max.X; x++ {
if seam.X == x {
if debug {
c.Seams = append(c.Seams, Seam{X: x, Y: y})
}
} else if seam.X < x {
dst.Set(x-1, y, img.At(x, y))
} else {
dst.Set(x, y, img.At(x, y))
}
}
}
return dst
}
// AddSeam add a new seam.
func (c *Carver) AddSeam(img *image.NRGBA, seams []Seam, debug bool) *image.NRGBA {
var (
lr, lg, lb uint32
rr, rg, rb uint32
)
bounds := img.Bounds()
dst := image.NewNRGBA(image.Rect(0, 0, bounds.Dx()+1, bounds.Dy()))
for _, seam := range seams {
y := seam.Y
for x := 0; x < bounds.Max.X; x++ {
if seam.X == x {
if debug {
c.Seams = append(c.Seams, Seam{X: x, Y: y})
}
if x > 0 && x != bounds.Max.X {
lr, lg, lb, _ = img.At(x-1, y).RGBA()
} else {
lr, lg, lb, _ = img.At(x, y).RGBA()
}
if x < bounds.Max.X-1 {
rr, rg, rb, _ = img.At(x+1, y).RGBA()
} else if x == bounds.Max.X {
rr, rg, rb, _ = img.At(x, y).RGBA()
}
// calculate the average color of the neighboring pixels
avr, avg, avb := (lr+rr)>>1, (lg+rg)>>1, (lb+rb)>>1
dst.Set(x, y, color.RGBA{uint8(avr >> 8), uint8(avg >> 8), uint8(avb >> 8), 0xff})
dst.Set(x+1, y, img.At(x, y))
} else if seam.X < x {
dst.Set(x, y, img.At(x-1, y))
dst.Set(x+1, y, img.At(x, y))
} else {
dst.Set(x, y, img.At(x, y))
}
}
}
return dst
}
Go
1
https://gitee.com/mirrors/Caire.git
git@gitee.com:mirrors/Caire.git
mirrors
Caire
Caire
master

搜索帮助