176 Star 1.7K Fork 459

scruel / Notes-ML-AndrewNg

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
week2.md 11.21 KB
一键复制 编辑 原始数据 按行查看 历史
scruel 提交于 2022-09-18 19:28 . Optimize code block&desc

4 多变量线性回归(Linear Regression with Multiple Variables)

4.1 多特征(Multiple Features)

对于一个要度量的对象,一般来说会有不同维度的多个特征。比如之前的房屋价格预测例子中,除了房屋的面积大小,可能还有房屋的年限、房屋的层数等等其他特征:

这里由于特征不再只有一个,引入一些新的记号

$n$: 特征的总数

${x}^{\left( i \right)}$: 代表样本矩阵中第 $i$ 行,也就是第 $i$ 个训练实例。

${x}_{j}^{\left( i \right)}$: 代表样本矩阵中第 $i$ 行的第 $j$ 列,也就是第 $i$ 个训练实例的第 $j$ 个特征。

参照上图,则有 ${x}^{(2)}\text{=}\begin{bmatrix} 1416\\\\ 3\\\\ 2\\\\ 40 \end{bmatrix}, {x}^{(2)}_{1} = 1416$

多变量假设函数 $h$ 表示为:$h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}}$

对于 $\theta_0$,和单特征中一样,我们将其看作基础数值。例如,房价的基础价格。

参数向量的维度为 $n+1$,在特征向量中添加 $x_{0}$ 后,其维度也变为 $n+1$, 则运用线性代数,可简化 $h$:

$$ h_\theta\left(x\right)=\begin{bmatrix}\theta_0; \theta_1; ... ;\theta_n \end{bmatrix}\begin{bmatrix}x_0 \newline x_1 \newline \vdots \newline x_n\end{bmatrix}= \theta^T x $$

$\theta^T$: $\theta$ 矩阵的转置

$x$: 某个样本的特征向量,$n+1$ 维特征量向量

$x_0$: 为了计算方便我们会假设 $x_0^{(i)} = 1$

注:该部分记号较多,记不住可随时回顾!

4.2 多变量梯度下降(Gradient Descent for Multiple Variables)

多变量代价函数类似于单变量代价函数,

即 $J\left( {\theta_{0}},{\theta_{1}}...{\theta_{n}} \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( h_{\theta} \left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}}$ ,其中 $h_\theta\left(x\right)= \theta^T x$。

前文提到梯度下降对于最小化代价函数的通用性,则多变量梯度下降公式即

$$ \begin{align*} & \text{Repeat until convergence:} ; \lbrace \\ &{{\theta }{j}}:={{\theta }{j}}-\alpha \frac{\partial }{\partial {{\theta }{j}}}J\left( {\theta{0}},{\theta_{1}}...{\theta_{n}} \right) \\ \rbrace \end{align*} $$

解出偏导得:

$$ \begin{align*} & \text{repeat until convergence:} ; \lbrace \\ & \theta_j := \theta_j - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} ; & \text{for j := 0,1...n}\\ \rbrace \end{align*} $$

可展开为:

$$ \begin{aligned} & \text{repeat until convergence:} ; \lbrace \\ & \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}\\ & \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)} \\ & \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \\ & \vdots \\ & \theta_n := \theta_n - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} &\\ \rbrace \end{aligned} $$

当然,同单变量梯度下降一样,计算时需要同时更新所有参数。

$h_\theta\left(x\right)= \theta^T x$,则得到同时更新参数的向量化(Vectorization)实现: $$ \theta = \theta - \alpha \frac{1}{m}(X^T(X\theta-y)) $$

$X$: 训练集数据,$m\times(n+1)$ 维矩阵(包含基本特征 $x_0=1$)

4.3 梯度下降实践1-特征值缩放(Gradient Descent in Practice I - Feature Scaling)

在应用梯度下降算法实践时,由于各特征值的范围不一,可能会影响代价函数收敛速度。

以房价预测问题为例,这里选取房屋面积大小和房间数量这两个特征。

下图中,左图是以原始数据绘制的代价函数轮廓图,右图为采用特征缩放(都除以最大值)后图像。左图中呈现的图像较扁,相对于使用特征缩放方法的右图,梯度下降算法需要更多次的迭代。

为了优化梯度下降的收敛速度,采用特征缩放的技巧,使各特征值的范围尽量一致

除了以上图人工选择并除以一个参数的方式,**均值归一化(Mean normalization)**方法更为便捷,可采用它来对所有特征值统一缩放:

$x_i:=\frac{x_i-average(x)}{maximum(x)-minimum(x)}$, 使得 $x_i \in (-1,1)$

对于特征的范围,并不一定需要使得 $-1 \leqslant x \leqslant 1$,类似于 $1\leqslant x \leqslant 3$ 等也是可取的,而诸如 $-100 \leqslant x \leqslant 100 $,$-0.00001 \leqslant x \leqslant 0.00001$,就显得过大/过小了。

另外注意,一旦采用特征缩放,我们就需对所有的输入采用特征缩放,包括训练集、测试集、预测输入等。

4.4 梯度下降实践2-学习速率(Gradient Descent in Practice II - Learning Rate)

通常,有两种方法来确定函数是否收敛

  • 多次迭代收敛法
    • 无法确定需要多少次迭代
    • 较易绘制关于迭代次数的图像
    • 根据图像易预测所需的迭代次数
  • 自动化测试收敛法(比较阈值)
    • 不易选取阈值
    • 代价函数近乎直线时无法确定收敛情况

对于梯度下降,一般采用多次迭代收敛法来得出最小化代价函数的参数值,自动化测试收敛法(如设定 $J\left(\theta\right) < {10}^{-3}$ 时判定收敛)则几乎不会被使用。

我们可以通过绘制代价函数关于迭代次数的图像,可视化梯度下降的执行过程,借助直观的图形来发现代价函数趋向于多少时能趋于收敛,依据图像变化情况,确定诸如学习速率的取值,迭代次数的大小等问题。

对于学习速率 $\alpha$,一般上图展现的为适中情况,下图中,左图可能表明 $\alpha$ 过大,代价函数无法收敛,右图可能表明 $\alpha$ 过小,代价函数收敛的太慢。当然,$\alpha$ 足够小时,代价函数在每轮迭代后一定会减少。

通过不断改变 $\alpha$ 值,绘制并观察图像,并以此来确定合适的学习速率。 尝试时可取 $\alpha$ 如 $\dots;0,001,;0.003,;0.01,;0.03,;0.1,;\dots$

4.5 特征和多项式回归(Features and Polynomial Regression)

在特征选取时,我们也可以自己归纳总结,定义一个新的特征,用来取代或拆分旧的一个或多个特征。比如,对于房屋面积特征来说,我们可以将其拆分为长度和宽度两个特征,反之,我们也可以合并长度和宽度这两个特征为面积这一个特征。

线性回归只能以直线来对数据进行拟合,有时候需要使用曲线来对数据进行拟合,即多项式回归(Polynomial Regression)

比如一个二次方模型:$h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2}$

或者三次方模型:$h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2}+{\theta_{3}}{x_{3}^3}$

或者平方根模型: $h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2}+{\theta_{3}}{\sqrt{x_3}}$

在使用多项式回归时,要记住非常有必要进行特征缩放,比如 $x_1$ 的范围为 1-1000,那么 $x_1^2$ 的范围则为 1- 1000000,不适用特征缩放的话,范围更有不一致,也更易影响效率。

4.6 正规方程(Normal Equation)

对于一些线性回归问题来说,正规方程法给出了一个更好的解决问题的方式。

正规方程法,即令 $\frac{\partial}{\partial{\theta_{j}}}J\left( {\theta_{j}} \right)=0$ ,通过解析函数的方式直接计算得出参数向量的值 $\theta ={{\left( {X^T}X \right)}^{-1}}{X^{T}}y$ ,Octave/Matlab 代码: theta = inv(X'*X)*X'*y

${X}^{-1}$: 矩阵 $X$ 的逆,在 Octave 中,inv 函数用于计算矩阵的逆,类似的还有 pinv 函数。

X': 在 Octave 中表示矩阵 X 的转置,即 $X^T$

下表列出了正规方程法与梯度下降算法的对比

条件 梯度下降 正规方程
是否需要选取 $\alpha$ 需要 不需要
是否需要迭代运算 需要 不需要
特征量大[^1]时 适用,$O\left(kn^2\right)$ 不适用,$(X^TX)^{-1}$ 复杂度 $O\left( {{n}^{3}} \right)$
适用范围[^2] 各类模型 只适用线性模型,且矩阵需可逆

[^1]: 一般来说,当 $n$ 超过 10000 时,对于正规方程而言,特征量较大。 [^2]: 梯度下降算法的普适性好,而对于特定的线性回归模型,正规方程是很好的替代品。

正规方程法的推导过程: $$ \begin{aligned} J\left( \theta \right)& =\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {h_{\theta}}\left( {x^{(i)}} \right)-{y^{(i)}} \right)}^{2}}}\\ & =\frac{1}{2m}||X\theta-y||^2 \\ & =\frac{1}{2m}(X\theta-y)^T(X\theta-y) \hspace{15cm} \end{aligned} $$

展开上式可得

$J(\theta )= \frac{1}{2m}\left( {{\theta }^{T}}{{X}^{T}}X\theta -{{\theta}^{T}}{{X}^{T}}y-{{y}^{T}}X\theta + {{y}^{T}}y \right)$

注意到 ${{\theta}^{T}}{{X}^{T}}y$ 与 ${{y}^{T}}X\theta$ 都为标量,实际上是等价的,则:

$J(\theta) = \frac{1}{2m}[X^TX\theta-2\theta^TX^Ty+y^Ty]$

接下来对$J(\theta )$ 求偏导,根据矩阵的求导法则:

$\frac{dX^TAX}{dX}=(A+A^\mathrm{T})X$

$\frac{dX^TA}{dX}={A}$

所以有:

$\frac{\partial J\left( \theta \right)}{\partial \theta }=\frac{1}{2m}\left(2{{X}^{T}}X\theta -2{{X}^{T}}y \right)={{X}^{T}}X\theta -{{X}^{T}}y$

令$\frac{\partial J\left( \theta \right)}{\partial \theta }=0$, 则有 $$ \theta ={{\left( {X^{T}}X \right)}^{-1}}{X^{T}}y $$

4.7 不可逆性正规方程(Normal Equation Noninvertibility)

(本部分内容为选讲)

正规方程无法应用于不可逆的矩阵,发生这种问题的概率很小,通常由于

  • 特征之间线性相关

    比如同时包含英寸的尺寸和米为单位的尺寸两个特征,它们是线性相关的

    即 ${x_{1}}={x_{2}}*{{\left( 3.28 \right)}^{2}}$。

  • 特征数量大于训练集的数量 $\left(m \leqslant n \right)$。

如果发现 $X^TX$ 的结果不可逆,可尝试:

  • 减少多余/重复特征
  • 增加训练集数量
  • 使用正则化(后文)

对于这类不可逆的矩阵,我们称之为奇异矩阵退化矩阵

这种情况下,如果还想使用正规方程法,在Octave中,可以选用 pinv 函数,pinv 区别于 invpinv 函数被称为伪逆函数,在矩阵不可逆的时候,使用这个函数仍可正确地计算出 $\theta$ 的值。

5 Octave/Matlab Tutorial

复习时可直接倍速回顾视频,笔记整理暂留。

5.1 Basic Operations

5.2 Moving Data Around

5.3 Computing on Data

5.4 Plotting Data

5.5 Control Statements: for, while, if statement

5.6 向量化(Vectorization)

$$ \sum\limits_{j=0}^n\theta_jx_j=\theta^Tx $$

5.x 常用函数整理

Matlab
1
https://gitee.com/scruel/Notes-ML-AndrewNg.git
git@gitee.com:scruel/Notes-ML-AndrewNg.git
scruel
Notes-ML-AndrewNg
Notes-ML-AndrewNg
master

搜索帮助