Fetch the repository succeeded.
This action will force synchronization from 时间坐标/paradox, which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
用python3和numpy实现一个简单的深度学习框架。
Name | Version |
---|---|
Python | 3.5.0+ |
Numpy | 1.13.0+ |
使用Paradox对进行梯度计算,并输出
x
的梯度。
整个过程由图计算和自动求导完成。
import paradox as pd
k = pd.Constant([[2, 3], [1, 1]], name='k')
b = pd.Constant([[7], [3]], name='b')
x = pd.Variable([[0], [0]], name='x')
y = k @ x + b
print(pd.Engine(y).gradient(x).value)
运行结果
[[ 3.]
[ 4.]]
Author | ict |
405340537 | |
ictxiangxin@hotmail.com |
Sign in for post a comment
Comments ( 0 )